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Abstract. The personalized PageRank diffusion is a fundamental tool
in network analysis tasks like community detection and link prediction.
It models the spread of a quantity from a set of seed nodes, and it has
been observed to stay localized near this seed set. We derive an upper-
bound on the number of entries necessary to approximate a personalized
PageRank vector in graphs with skewed degree sequences. This bound
shows localization under mild assumptions on the maximum and mini-
mum degrees. Experimental results on random graphs with these degree
sequences show the bound is loose and support a conjectured bound.
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1 Introduction

Personalized PageRank vectors [23] are a ubiquitous tool in data analysis of
networks in biology [12,21] and information-relational domains such as recom-
mender systems and databases [15,17,22]. In contrast to the standard PageRank
vector, personalized PageRank vectors model a random-walk process on a net-
work that randomly returns to a fixed starting node instead of restarting from
a random node in the network as in the traditional PageRank. This process is
also called a random-walk with restart.

The stationary distributions of the resulting process are typically called
personalized PageRank vectors. We prefer the terms “localized PageRank” or
“seeded PageRank” as these choices are not as tied to PageRank’s origins on the
web. A seeded PageRank vector depends on three terms: the network modeled as
a column-stochastic matrix P characterizing the random-walk process, a para-
meter α that determines the restart probability (1 − α), and a seed node s. The
vector es is the vector of all zeros with a single 1 in the position corresponding to
node s. The seeded PageRank vector x is then the solution of the linear system:

(I − αP)x = (1 − α)es.
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When the network is strongly connected, the solution x is non-zero for all nodes.
This is because there is a non-zero probability of walking from the seed to any
other node in a strongly connected network. Nevertheless, the solution x dis-
plays a behavior called localization. We can attain accurate localized PageRank
solutions by truncating small elements of x to zero. Put another way, there is
a sparse vector xε that approximates x to an accuracy of ε. This behavior is
desirable for applications of seeded PageRank because they typically seek to
“highlight” a small region related to the seed node s inside a large graph.

The essential question we study in this paper is: how sparse can we make xε?
To be precise, we consider a notion of strong localization, ‖xε − x‖1 ≤ ε, and we
focus on the behavior of f(ε) := min nonzeros(xε). Note that xε depends on α,
the particular random-walk on the graph P, and the seed node s from which the
PageRank diffusion begins. We only consider stochastic matrices P that arise
from random-walks on strongly-connected graphs. So a more precise statement
of our goal is:

fα(ε) = max
P

max
s

min
xε

nonzeros(xε) where ‖xε − x(α,P, s)‖1 ≤ ε,

and where x(α,P, s) is the seeded PageRank vector (1 − α)(I − αP)−1es. The
goal is to establish bounds on f(ε) that are sublinear in n, the number of nodes
of the graph, because that implies localized solutions to PageRank.

Adversarial localized PageRank constructions exist where the solutions x are
near the uniform distribution (see Sect. 2). Thus, it is not possible to meaning-
fully bound f(ε) as anything other than n. It is also known that f(ε) is sublinear
in n for graphs that are essentially of bounded maximum degree [6] due to resol-
vent theory. The case of skewed degrees was open until our result.

We establish an upper-bound on fα(ε) as a function of the rate of decay of
the degree sequence, 1/ε, α, the maximum degree d, and the minimum degree δ
(Theorem 1). This bound enables us to establish sublinear localization for graphs
with growing maximum degrees provided that the other node degrees decay suffi-
ciently rapidly. When we study this bound in random realizations of appropriate
networks, it turns out to be loose; hence, we develop a new conjectured bound
(Sect. 4).

1.1 Related Work on Weak Localization

There is another notion of localization that appears in uses of PageRank for
partitioning undirected graphs:

‖D−1(xε − x)‖∞ = max
i

|[xε]i − xi|/di ≤ ε.

If this notion is used for a localized Cheeger inequality [1,10], then we need the
additional property that 0 ≤ xε ≤ x element-wise. When restated as a localiza-
tion result, the famous Andersen-Chung-Lang PageRank partitioning result [1]
includes a proof that:

max
P

max
s

min
xε

nonzeros(xε) ≤ 1
1−α

1
ε , where ‖D−1(xε − x(α,P, s))‖∞ ≤ ε.
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This establishes that any uniform random walk on a graph satisfies a weak-
localization property. The paper also gives a fast algorithm to find these weakly
local solutions. More recently, there have appeared a variety of additional weak-
localization results on diffusions [13,19].

1.2 Related Work on Functions of Matrices and Diffusions

Localization in diffusions is broadly related to localization in functions of matri-
ces [6]. The results in that literature tend to focus on the case of banded
matrices (e.g. [5]), although there are also discussions of more general results
in terms of graphs arising from sparse matrices [6]. These same types of decay
bounds can apply to a variety of graph diffusion models that involve a stochastic
matrix [3,16], and recent work shows that they may even extend beyond this
regime [13]. In the context of the decay of functions of matrices, we advance the
literature by proving a localization bound for a particular resolvent function of
a matrix that applies to graphs with growing maximum degree.

2 A Negative Result for Strong Localization

Here we give an example of a graph that always has a non-local seeded PageR-
ank vector. More concretely, we demonstrate the existence of a personalized
PageRank vector that requires Θ(n) nonzeros to attain a 1-norm accuracy of ε,
where n is the number of nodes in the graph.

The graph is just the undirected star graph on n nodes. Then the PageRank
vector x seeded on the center node has value 1/(1 + α) for the center node and
α/((1+α)(n− 1)) for all leaf nodes. Suppose an approximation x̂ of x has M of
these leaf-node entries set to 0. Then the 1-norm error ‖x − x̂‖1 would be at least
Mα/((1+α)(n−1)). Attaining a 1-norm accuracy of ε requires Mα/((1+α)(n−
1)) < ε, and so the minimum number of entries of the approximate PageRank
vector required to be non-zero (n − M) is then lower-bounded by n(1 − c) + c,
where c = ε(1 + α)/α. Note that this requires c ∈ (0, 1), which holds if ε < α/2.
Thus, the number of nonzeros required in the approximate PageRank vector
must be linear in n.

3 Localization in Personalized PageRank

The example in Sect. 2 demonstrates that there exist seeded PageRank vectors
that are non-local. Here we show that graphs with a particular type of skewed
degree sequence and a growing, but sublinear, maximum degree have seeded
PageRank vectors that are always localized, and we give an upper-bound on
f(ε) for this class of graph. This theorem originates in our recent work on seeded
heat kernel vectors [14], and we now employ similar arguments to treat seeded
PageRank vectors. Our present analysis yields tighter intermediate inequalities
and results in an entirely novel bound for the localization of PageRank.
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Theorem 1. Let P be a uniform random walk transition matrix of a graph on
n nodes with maximum degree d and minimum degree δ. Additionally, suppose
that the kth largest degree, d(k), satisfies d(k) ≤ max {dk−p, δ}. The Gauss-
Southwell coordinate relaxation method applied to the seeded PageRank problem
(I − αP)x = (1 − α)es produces an approximation xε satisfying ‖x − xε‖1 < ε
having at most N non-zeros in the solution, where N satisfies

N = min
{

n, 1
δ Cp

(
1
ε

) δ
1−α

}
, (1)

and where we define Cp to be

Cp := d(1 + log d) if p = 1

:= d

(
1 + 1

1−p

(
d
1
p −1 − 1

))
otherwise.

Note that the upper bound N = n is trivial as a vector cannot have more
non-zeros than entries. Thus, d, δ, p, and n must satisfy certain conditions to
ensure that inequality (1) is not trivial. In particular, for values of p < 1, it is
necessary that d = o(np) for inequality (1) to imply that N = o(n). For p > 1,
the bound guarantees sublinear growth of N as long as d = o(n). Additionally,
the minimum degree δ must be bounded by O(log log n). Thus we arrive at:

Corollary 1. Let G be a class of graphs with degree sequences obeying the con-
ditions of Theorem 1 with constant δ and d = o(nmin(p,1)). Then f(ε) = o(n),
and seeded PageRank vectors are localized.

We also note that the theorem implies localized seeded PageRank vectors for
any graph with a maximum degree d = O(log log n).

3.1 Our Class of Skewed Degree Sequences

We wish to make a few remarks about the class of skewed degree sequences
where our results apply. Perhaps the most well-known is the power-law degree
distribution where the probability that a node has degree k is proportional to
k−γ . These power-laws can be related to our skewed sequences with p = 1/(γ−1)
and d = O(np) [2]. This setting renders our bound trivial with n nonzeros.
Nevertheless, there is evidence that some real-world networks exhibit our type
of skewed degrees [11] where the bound is asymptotically non-trivial.

3.2 Deriving the Bound

Getting back to the proof, our goal is an ε-approximation, xε, to the equation
(I − αP)x = (1 − α)es for a seed s. Given an approximation, x̂, we can express
the error in terms of the residual vector r = (1 − α)es − (I − αP)x̂ as follows:

x − x̂ = (I − αP)−1 r. (2)
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Using this relationship, we can bound our approximation’s 1-norm accuracy,
‖x− x̂‖1, with the quantity 1

1−α‖r‖1. This is because the column-stochasticity of
P implies that ‖(I−αP)−1‖1 = 1

1−α . Guaranteeing a 1-norm error ‖x−x̂‖1 < ε is
then a matter of ensuring that ‖r‖1 < (1−α)ε holds. To bound the residual norm,
we look more closely at a particular method for producing the approximation.

The Gauss-Southwell iteration. The Gauss-Southwell algorithm is a coordinate
relaxation method for solving a linear system akin to the Gauss-Seidel linear
solver. When solving a linear system, the Gauss-Southwell method proceeds by
updating the entry of the approximate solution that corresponds to the largest
magnitude entry of the residual, r. We describe the Gauss-Southwell update as
it is used to solve the seeded PageRank linear system.

The algorithm begins by setting the initial solution x(0) = 0 and r(0) =
(1−α)es. In step k, let j = j(k) be the entry of r(k) with the largest magnitude,
and let m = |r(k)j |. We update the solution x(k) and residual as follows:

x(k+1) = x(k) + mej (3)

r(k+1) = es − (I − αP)x(k+1), (4)

and the residual update can be expanded to r(k+1) = r(k)−mej +mαPej . Since
each update to the solution x(k) alters exactly one entry of the vector, the index
k is an upper-bound on the number of non-zeros in the solution.

This application of Gauss-Southwell to seeded PageRank-style problems has
appeared numerous times in recent literature [7,8,18,20]. In at least one instance
([8], Sect. 5.2) the authors showed that the residual and solution vector stay
nonnegative throughout this process, assuming the seed vector is nonnegative
(which, in our context, it is). So the 1-norm of the residual can be expressed as
‖r(k+1)‖1 = eT r(k+1), where e is the vector of all ones. Expanding the residual in
terms of the iterative update presented above, we can write the residual norm as
eT

(
r(k) − mej + mαPej

)
. Then, denoting ‖r(k)‖1 by rk, yields the recurrence

rk+1 = rk − m(1 − α).
Next observe that since m is the largest magnitude entry in r, it is larger

than the average value of r. Let Z(k) denote the number of nonzero entries
in r(k); then the average value can be expressed as rk/Z(k). Hence, we have
m ≥ rk/Z(k), and so we can bound rk −m(1−α) above by rk − rk(1−α)/Z(k).
Thus, rk+1 ≤ rk (1 − (1 − α)/Z(k)), and we can recur to find:

rk+1 ≤ r0

k∏
t=0

(
1 − 1−α

Z(t)

)
, (5)

where r0 = (1−α) because r0 = (1−α)es. Then, using the fact that log(1−x) ≤
−x for x < 1, we note:

rk+1 ≤ (1 − α)
k∏

t=0

(
1 − 1−α

Z(t)

)
≤ (1 − α) exp

(
−(1 − α)

k∑
t=0

1
Z(t)

)
. (6)
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To progress from here we need some control over the quantity Z(t) and this is
where our skewed degree sequence enters the proof.

3.3 Using the degree sequence

We show that for a graph with this kind of skewed degree sequence, the number
of entries in the residual obeys:

Z(t) ≤ Cp + δt, (7)

where the term Cp is defined in the statement of Theorem 1. A similar analysis
was presented in [14], but the current presentation improves the bound on Cp.
This bound is proved below, but first we use this bound on Z(t) to control the
bound on rk. Lemma 5.6 from [14] implies that

k∑
t=0

1
Z(t) ≥ 1

δ log ((δ(k + 1) + Cp)/Cp)

and so, plugging into (6), we can bound

rk+1 ≤ (1 − α) exp
(
− (1−α)

δ log
(

(δ(k+1)+Cp)
Cp

))
,

which simplifies to rk+1 ≤ (1 − α) ((δ(k + 1) + Cp)/Cp)
(α−1)/δ. Finally, to guar-

antee rk < ε(1 − α), it suffices to choose k so that ((δk + Cp)/Cp)
(α−1)/δ ≤ ε.

This holds if and only if (δk + Cp) ≥ Cp (1/ε)δ/(α−1) holds, which is guaranteed
by k ≥ 1

δ Cp (1/ε)δ/(1−α)
. Thus, k = 1

δ Cp (1/ε)δ/(1−α) steps will produce an ε-
approximation. Each step introduces at most one non-zero, which implies that
if k < n, then there is an approximation xε with N = k < n non-zeros. If k ≥ n,
then this analysis produces the trivial bound N = n.

Proving the degree sequence bound. Here we prove the inequality in (7) used in
the proof above. For additional details, see the proof of Lemma 5.5 in [14], which
is similar but results in a slightly worse bound. First, observe that the number of
nonzeros in the residual after t steps is bounded above by the sum of the largest
t degrees, Z(t) ≤ ∑t

k=1 d(k). When we substitute the decay bound d(k) ≤ dk−p

into this expression, d(k) is only a positive integer when k ≤ (d/δ)1/p. Hence,
we split the summation Z(t) ≤ ∑t

k=1 d(k) into two pieces,

Z(t) ≤
t∑

k=1

d(k) ≤
⎛
⎝�(d/δ)1/p�∑

k=1

dk−p

⎞
⎠ +

t∑
k=�(d/δ)1/p�+1

δ.

We want to prove that this implies Z(t) ≤ Cp+δt. The second summand is always

less than δt. The first summand can be bounded above by d
(
1 +

∫ (d/δ)1/p

1
x−pdx

)
using a right-hand integral rule. This integral is straightforward to bound above
with the quantity Cp defined in Theorem 1. This completes the proof.
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4 Experiments

We present experimental results on the localization of seeded PageRank vectors
on random graphs that have our skewed degree sequence and compare the actual
sparsity with the predictions of our theoretical bound. This involves generating
random graphs with the given skewed degree sequence (Sect. 4.1) and then com-
paring the experimental localization with our theoretical bound (Sect. 4.3). The
bound is not particularly accurate, and so we conjecture a new bound that better
predicts the behavior witnessed (Sect. 4.4).

4.1 Generating the Graphs

For experimental comparison, we wanted a test suite of graphs with varying but
specific sizes and degree sequences. To produce these graphs, we use the Bayati-
Kim-Saberi procedure [4] for generating undirected graphs with a prescribed
degree sequences. The degree sequences used follow our description in Theorem 1
precisely. We choose the maximum degree d to be n1/3 or n1/2 and the minimum
degree to be δ = 2. We use several values for the decay exponent p, stated below.

After generating the degree sequence, we use the Erdős-Gallai conditions and
the Havel-Hakimi algorithm to check if it is graphical. If the previously generated
sequence fails, we perturb the sequence slightly and recheck the conditions. It
often fails because the sequence has an odd sum; to resolve this state it suffices
to increase the degree of one of the nodes with minimum degree by 1. Lastly, we
verify that the graph contains a large connected component. We proceed once
a graph has been generated that meets the above conditions and has a largest
connected component that includes at least n(1 − 10−2) nodes.

4.2 Measuring the Non-zeros

Given a graph, we first use the power method to compute a PageRank vector,
seeded on the node with largest degree, to high-accuracy (1-norm error bounded
by 10−12). This requires �(log(ε/2))/(log(α))� iterations based on the geometric
convergence rate of α. We then study vectors xε satisfying ‖xε − x‖1 ≤ ε, for
accuracies ε = {10−1, 10−2, 10−3, 10−4}. To count the number of nonzeros in a
vector xε for a particular accuracy ε, we first recall:

fα(ε) = max
P

max
s

min
xε

nonzeros(xε) where ‖xε − x(α,P, s)‖1 ≤ ε.

Thus, we need to compute xε in a way that includes as many zeros as possible,
subject to the constraint that the 1-norm of the difference between xε and x
stays bounded by ε. The idea is to generate xε by computing x and deleting its
smallest entries. The following steps illustrate our process to accomplish this:

– Compute the PageRank vector x with accuracy 10−12 via the power method.
– Sort x in ascending order.
– Determine the largest index j so that (

∑j
k=1 xk) ≤ ε.

– Truncate these j entries to 0. Then xε contains n − j nonzeros.
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4.3 Testing the Theoretical Bound

To test the effectiveness of our theoretical bound in Theorem 1 we generate
graphs with decay exponent p = 0.95, with different sizes n = {104, . . . , 109},
and with maximum degree d = n1/3 and minimum degree δ = 2. Then we solve
the seeded PageRank system, seeded on the node of maximum degree, with
α = {0.25, 0.5}.

For a more compact notation, let nonzeros(xε) = nnz(xε) be the empirical
number of nonzeros produced by our experiment. Figure 1 shows how nnz(xε)
varies with n and α. Our theory gives a non-trivial bound once n > 106 for
α = 0.25 and n > 108 for α = 0.5. These values of α (or near relatives) have been
used in the literature [9,24]. That said, the theoretical bound stays far from the
plot of the sparsity of the ε-approximate diffusion. Since the theoretical bound
behaves poorly even on the extreme points of the parameter settings, we wished
for a tighter, empirical bound.
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Fig. 1. A log-log plot of the quantity nnz(xε) versus 1/ε obtained for different experi-
ments for α = {0.25, 0.5} . We fix p = 0.95 for all plots, and run experiments on graphs
of sizes {104, 105, 106, 107, 108, 109}. We choose d = n1/3 and δ = 2. The red dashed
line represents a vector with all non-zeros present. The solid black line shows the bound
predicted by Theorem 1. The blue curve shows the actual number of non-zeros found
(Color figure online).

4.4 Empirical Non-zero Analysis

In this section, we develop a new bound that better predicts the scaling behavior
of the number of nonzeros in xε as other parameters vary. We do this by studying
the relationships among nnz(xε), ε, and p in a parametric study. Our goal is to
find a function g where

nnz(xε)
d log(d)

scales like g(α, ε, p). (8)

(The choice of d log(d) was inspired by our theoretical bound.) We first fix n =
106, d = n1/2, and p = 0.95 and generate a graph as mentioned in Sect. 4.1. We
then solve the PageRank problem and find the number of nonzeros for different ε
values as mentioned in Sect. 4.2. We use α = {0.25, 0.3, 0.5, 0.65, 0.85} and count
the number of nonzeros in the diffusion vector based on four accuracy settings,
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ε = {10−1, 10−2, 10−3, 10−4}. We then generate a log-log plot of nnz(xε)
d log(d) versus

1/ε for the different values of α. The outcome is illustrated in Fig. 2 (left).
From Fig. 2, we can see that as α increases, the values nnz(xε)

d log(d) also increase,

interestingly, nearly as a linear shift. Since we have seen that nnz(xε)
d log(d) seems to

vary inversely with (1 − α), we specialize the form of g as g(α, ε, p) = c1
(1−α) ·

g2(ε, p).
We similarly derive a relation between nnz(xε)

d log(d) and p. Here, we fix n = 106

and d = n1/2 then generate graphs with different decay exponents p, namely:
p = {0.5, 0.75, 0.95}. We report the results in Fig. 2 (right). We can see that as the
value of p increases, the curves nnz(xε)

d log(d) appear to grow much more slowly. Further-
more, the difference between the curves becomes exponential as 1/ε increases.
This leads us to think of the relation between p and nnz(xε)

d log(d) as an exponen-

tial function in terms of 1/ε. Also, since p and nnz(xε)
d log(d) are inversely related, we

consider 1/p rather than p. Therefore, we arrive at a relationship of the form:

g(α, ε, p) = c1
(1−α)

(
1
ε

)c2/pc3

for some constants c1, c2, c3. After experimenting with the above bound, we found
that the best results were achieved at c1 = 0.2, c2 = 0.25, c3 = 2.

4.5 Results

The experimental scaling bound derived in Sect. 4.4 is now:

nnz(xε) ≤ d log(d) 0.2
(1−α)

(
1
ε

)1/(2p)2

. (9)
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Fig. 2. Log-log plots of nnz(xε)
d log(d)

versus 1/ε obtained on graphs of size n = 106 with d =

n1/2 as α and p vary. At left, p is fixed to p = 0.95 and the black, green, blue, red, and
dashed black curves represent nnz(xε)

d log(d)
for α = {0.25, 0.3, 0.5, 0.65, 0.85} respectively.

At right, α is fixed to α = 0.5 and the dashed blue, black, and green curves represent
nnz(xε)
d log(d)

for p = {0.5, 0.75, 0.95}, respectively (Color figure online).
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Fig. 3. Each sub-plot has x-axis representing 1/ε and y-axis representing the number
of non-zeros present in a diffusion vector of 1-norm accuracy ε. The red dashed line rep-
resents a vector with all non-zeros present. The black dashed line shows our predicted
bound (9). The blue curve shows the actual number of non-zeros found. As graphs
get bigger (i.e. the fourth to sixth columns) the theoretical bound (black line) almost
exactly predicts the locality of the ε-approximate diffusion (Color figure online).
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Fig. 4. Each sub-plot has x-axis representing 1/ε and y-axis representing the number
of non-zeros present in a diffusion vector of 1-norm accuracy ε. The red dashed line rep-
resents a vector with all non-zeros present. The black dashed line shows our predicted
bound (9). The blue curve shows the actual number of non-zeros found. As graphs
get bigger (i.e. the fourth to sixth columns) the theoretical bound (black line) almost
exactly predicts the locality of the ε-approximate diffusion (Color figure online).

In what follows, we demonstrate the effectiveness of this bound in describing the
localization of seeded PageRank vectors computed with different values of α, on
graphs with skewed degree sequences with varying decay exponents.

For each set of parameters (graph size n, d = n1/2, decay exponent p, and
PageRank constant α), the plots in Figs. 3 and 4 display the number of nonzeros
needed to approximate a PageRank vector with 1-norm accuracy ε as a function
of 1/ε. The blue curve represents the actual number of nonzeros required in the
ε-approximation. Each plot also has a black dashed line showing the prediction
by our conjectured bound (9). We note that our conjectured bound appears to
properly bound the empirical scaling in all of the plots well; although, it fails to
provide a true bound for some.

5 Discussion

We have shown that seeded PageRank vectors, though not localized on all graphs,
must behave locally on graphs with degree sequences that decay sufficiently
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rapidly. Our experiments show our theoretical bound to be terribly loose. In some
sense this is to be expected as our algorithmic analysis is worst case. However,
it isn’t clear that any real-world graphs realize these worst-case scenarios. We
thus plan to continue our study of simple graph models to identify empirical
and theoretical localization bounds based on the parameters of the models. This
will include a theoretical justification or revisitation of the empirically derived
bound. It will also include new studies of Chung-Lu graphs as well as the Havel-
Hakimi construction itself. Finally, we also plan to explore the impact of local
clustering. Our conjecture is that this should exert a powerful localization effect
beyond that due to the degree sequence.

One open question sparked by our work regards the relationship between
localized solutions and constant or shrinking average distance in graphs. It is
well known that social networks appear to have shrinking or constant effective
diameters. Existing results in the theory of localization of functions of matrices
imply that a precise bound on diameter would force delocalization as the graph
grows. Although the localization theory says nothing about average distance or
small effective diameters, it hints that the solutions would delocalize. However,
solutions often localize nicely in real-world networks, and we wish to understand
the origins of the empirical localization behavior more fully. Another open ques-
tion regards whether localization is possible on graphs with a power-law degree
distribution. Our current analysis is insufficient for this case.
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